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Abstract

The following items are provided in the supplementary
material:

I. A live demo to run our networks on your own query
images and a dataset design tool to visualize the effects
of different dataset design parameters (§ 1).

II. Code, Docker, runnable examples and a documenta-
tion of usage for the annotator, tools, and the starter
dataset (§ 2).

III. Mid-level cues provided by Omnidata annotator and
their definitions (§ 3).

IV. Results of surface normal estimation with refocusing
augmentation on blurred data (§ 4).

V. A description of GSO+Replica dataset generation pro-
cess (§ 5).

VI. Dataset ablation analysis on surface normal estima-
tion and panoptic segmentation for the starter set (§ 6).

VII. Visualization and evaluation of the “Blind Guess”
(statistically informed guess) for the starter set (§ 7).

VIII. More qualitative results of surface normal estimation
on OASIS dataset (§ 8).

IX. Full experimental setup for multi-task learning rank
reversal experiment (§ 9).

1. Online Demos
The project website includes a live demo that allows to

run our pretrained networks on your own uploaded query
images. You can visualize the predictions for different tasks
and see a comparison of Omnidata models to various
baselines. The demo page also contains a link to the “demo
archive” where you can browse uploads from other users.
We also provide a dataset design tool that allows playing
with different dataset design choices to visualize their ef-
fect on the sampled data.

2. Dockerized Pipeline, Tools, and Documenta-
tion

We provide a Dockerized Pipeline with all necessary
software (Blender [10], MeshLab [9], and other libraries)
installed, Pytorch dataloaders for loading the generated data
and applying the necessary transforms for reading in each
modality to analytic values, a starter dataset along with
download scripts and other utilites. We also provide Om-
nidata Docs which includes a documentation on how to use
all the open-sourced material of our paper.

3. Mid-level Cues Provided

This section describes the default mid-level cues and ad-
ditional outputs provided by the Omnidata annotator.

3.1. 2D Cues

2D Unsupervised Segmentation: Gestalt psychology pro-
poses grouping as a primary mechanism through which hu-
mans learn to perceive the world as a set of coherent objects
[33]. The annotator provides groupings based on normal-
ized cuts [28] of the RGB image into perceptually similar
spatially coherent groups.

Texture Edges: offer low-level cues about object bound-
aries. Classic computer vision pipelines commonly use
edges as an intermediate representation in a larger pro-
cessing pipeline. The annotator provides edges from a
Canny [5] edge detector without nonmax suppression.

2D Keypoints: are designed to indicate possibly important
pixels and identify them across images. These are frequent
in both vision [14] and robotics [22, 23] pipelines. The an-
notator provides pre-nonmax-suppression SURF intensity
maps to identify potentially important regions of the RGB
image, and the fragments cue (see below) can be used to
link points across images.
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3.2. Single-View 3D Cues

Depth: Z-Buffer: For each pixel, the metric distance from
the point to the camera plane. The most common form of
depth in computer vision + robotics.

Depth: Euclidean: For each pixel, the metric distance
from the point to the camera’s optical center. This can be
used (e.g.) for adding lens blur (Sec. 6.2 of the main pa-
per).

Surface Normals: Crucial for computer vision and
robotics tasks (e.g. for computing lighting, grasp estima-
tion, etc.): the tangent vector relative to the camera of the
corresponding point on the mesh.

Principal Curvature: For each pixel, the principal curva-
tures κ1 and κ2, which are also sufficient for computing
Gaussian (κ1 ·κ2) and mean ((κ1+κ2)/2) curvature. These
quantities are invariant under rigid transformations, and
curvature is known to be important in primate visual pro-
cessing [34].

Occlusion Edges: indicate boundaries where one pixel oc-
cludes something behind it. While 2D edges respond to to
changes in texture, 3D edge features depend only on 3D
geometry and are invariant to color and lighting.

(re)Shading: One cue to infer scene geometry from an
RGB image is “shape from shading” [3] via the intrinsic
image decomposition I = A · S into an albedo A and a
shading function S parameterized by lighting and depth.
The decomposition is thought to be useful for human vi-
sual perception [2]. We define a (re)shading cue for S
as follows: Given an RGB image, the label is the shad-
ing function S that results from having a single point light
at the camera origin, and S is multiplied by a constant fixed
albedo A.

3D Keypoints: 3D keypoints, like 2D, are designed to indi-
cate possibly important points and link them across view-
points. Unlike 2D keypoints, 3D keypoints are often de-
signed to be invariant to informative (but possibly dis-
tracting) cues such as texture [39, 30, 24, 35, 17]. Based
on its specificity and robustness, we use the pre-nonmax-
suppressed output of [30] for this cue.

2.5D Unsupervised Segmentation: uses the same graphcut
algorithm as 2D, but the labels are computed jointly from
the RGB, depth image, and surface normals. Thus the 2.5D
segmentation cue incorporates information about scene ge-
ometry that is not present in the RGB image but readily
inferred by humans.

Manhattan Vanishing Points: Vanishing points offer use-
ful information about the scene geometry [25, 18], particu-
larly a “Manhattan world” [11, 38, 4] with three dominant
vanishing points (X, Y, and Z axis). We provide the X, Y,
and Z Manhattan vanishing points (Gaussian sphere for-
mat).

Camera Intrinsics: Deep networks are excessively sensi-
tive to changes in camera intrinsics such as field-of-view.
We provide camera intrinsics for each image.

3.3. Multi-View 3D Cues

Camera Extrinsics: provides camera RT matrices for each
image.

Point Matching: indicates which other preselected points
are present in this view. Useful for point matching tasks
such as [14].

Fragments (Optical Flow): Each space point view image
contains an image whose pixel values encode the corre-
sponding mesh face, and these values are consistent across
images in the space and can be decoded to approximate
global 3D coordinates or used for optical flow. This would
be akin to perfect feature descriptors for either 2D or 3D
keypoints.

3.4. Semantic Cues

If the dataset supports, the annotator can provide cues for
the following:

Class Presence: labels provide a present/not present indi-
cator used for image classification.

Instances: identify the instance identity of each pixel. Re-
gardless of class, this gives an object-centric grouping.

Semantic Class: the semantic category for each pixel.

Panoptic Segmentation1: combination of semantic seg-
mentation and instance identification [16].

1The Panopticon (from 18th-century philosopher Jeremy Bentham)

An illustrated panopticon.
Two of the first 10 images re-
turned for the Google query
“modern panopticon” make
reference to Facebook, in-
cluding one that is simply the
above image with the Face-
book logo superimposed.

was conceived as the ideal prison; an in-
stitutional system of control-by-surveillance
whereby a centralized security guardhouse
can observe all prisoners in one view, while
subjects are unable to tell whether they are be-
ing watched. Though instantiated as a build-
ing, Bentham intended it as a method for any
institution, with the threat of observation, to
force compliance and docility. Expanded and
popularized by Foucault [13] in the 20th cen-
tury, Panopticism remains influential among
disciplines across the humanities and social
sciences. The panopticon is also well-known
in popular culture; as “Big Brother” in the
surveillance narrative Nineteen Eighty-Four,
for example, and by name in the cover story
of the most recent edition of The Economist (“The People’s Panopticon,”
7 Aug. 2021 edition).

Since Facebook is dealing with public reprobation over its transgres-
sive surveillance policies and (repeated) privacy violations, it probably did
not intend for the designation panoptic segmentation to bear such an un-
fortunate resemblance to panopticism. In any case, a concrete name like
“Per-Pixel Category and Instance Classification” would be clearer and less
provokative.
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3.5. Additional Information

RGB: RGB images can be real image scans if provided, or
they can be rendered from the textured mesh.

Masks that indicate whether the pixel corresponds to an
area missing from the mesh.

4. Surface Normal Estimation with Refocusing
Augmentation

As described in Sec. 6.2 of the main paper, the mid-
level cues can be used as data augmentations in addition to
training targets. While defocus cue can be useful in depth
estimation [15, 6, 29], we explore it as refocusing augmen-
tation on our dataset, which is possible due to availability of
camera parameters and euclidean depth. We provide quan-
titative and qualitative surface normal estimation results for
training with this augmentation. Tab. 1 compares 2 mod-
els trained with and without this augmentation evaluated on
both refocused and blurred test data from our starter set. We
use Gaussian blur with kernel size 3 and sigma uniformly
chosen in the range (0.1, 2). As shown by the results, the
model trained with refocusing augmentation shows much
better performance on the blurred data. The gap is clearer
as shown by images in Fig. 1. The figure shows that the
baseline model would easily fail with a small amount of
blur present in the input, and the refocusing augmentation
has a substantial effect in increasing the robustness to these
blur effects. We repeat the experiment with different levels
of blur in the input using different kernel sizes (3, 5, 7, 9).
Fig. 2 shows the performance of the models for each amount
of blur. As the plots show, the model trained with augmen-
tation shows good performance even for high levels of blur,
while the accuracy drops significantly in the baseline model
as the blur increases.

Error (↓) Angular Error◦ (↓) % Within t◦ (↑)
Refocusing Augmentation Test Data L1 MSE Mean Median 11.25◦ 22.5◦ 30◦

7 Blurred 7.54 2.04 16.86 8 61.91 75.73 81.17

3 6.44 1.61 14.37 6.40 66.20 79.31 84.53

7 Refocused 6.45 1.63 14.42 6.52 66.36 79.55 84.67

3 6.14 1.48 13.685 6.108 67.23 80.46 85.64

Table 1: Surface normal estimation with refocusing augmentation.
The models are evaluated on blurred and refocused test split of the starter
set. Gaussian blur with kernel size 3 is used for blurring the input. As the
results show, refocusing augmentation improves the performance of the
model on blurred data.

5. GSO+Replica Dataset Generation Process
We scatter Google Scanned Objects [1] around

Replica [31] buildings to create object-centric views. Habi-
tat [21] environment is used to generate physically plausible
scenes. The dataset is provided in 3 different object densi-
ties for each space (3, 6, 15 objects per square meter which
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Figure 1: Qualitative results for refocusing augmentation. The results
compare the models trained with and without refocusing augmentation on
both refocused and blurred data from the test splits of the starter set. Same
parameters as training are used for refocusing the test data. We also use
Gaussian blur with kernel size 3 for blurring the input. Clearly the model
trained with the augmentation shows much more robustness to blur effects
while the baseline model easily fails with a small amount of blur [best
viewed zoomed in].

we refer to as low, medium, high density). Objects are
randomly sampled from 1032 objects provided in Google
Scanned Objects, and they are scattered uniformly across
the building according to the density. To create object-
centric views, thousands of cameras are generated in each
space using Poisson Disc Sampling. Points of interest are
only sampled from the objects rather than the whole mesh.
For each point-of-interest, a subset of cameras with an un-
obstructed line-of-sight of the point are selected. Cameras
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Figure 2: Performance of the 2 training procedures (w/ and w/o refo-
cusing augmentation) for different amounts of blur in test data. We use
Gaussian blur with kernel sizes 3, 5, 7, and 9, to produce different amounts
of blur in the input. The plots show the ”Accuracy within 11.25°” (left) and
”Mean Angular Error” (right) for the 2 models for each kernel size. It is
shown that the performance of the baseline model significantly drops with
increasing the amount of blur while the model trained with augmentation
shows much more robustness.

are filtered according to an additional constraint so that the
point-camera distance is between 0.2 and 1 meter to make
sure we have an object-centric view. The views are saved
for each camera-point combination in which the camera is
fixated on the point-of-interest. Examples of images from
each object density are shown in Fig. 3.

6. Dataset Ablation Analysis of the Starter Set

To assess the contribution of each single dataset in our
starter set, we list the zero-shot transfer performance to OA-
SIS [8] and COCO [19] for models trained on each single
dataset of the starter set, and some combinations of them.

The results listed in Tab. 2 and 3 provide an under-
standing of the impact of each dataset component in our
starter set. Models trained on only scene-level data such
as Taskonomy [37], Hypersim [27], or Replica [31] result
on poor performance on objects, while the model trained
on GSO+Replica will have an object-centric bias with poor
performance on backgrounds and scenes. We provide a
starter dataset with both scene- and object-centric views
which, as shown by the results, is necessary for final best
performance and generalization to in-the-wild data. Fur-
thermore, including all datasets is necessary since the diver-
sity present in the whole starter dataset will further improve
the generalization.

7. Blind Guesses (Statistically Informed
Guesses) for the Starter Set

Similar to [36], we compute the blind guesses (query-
agnostic statistically informed guess) from the starter set
for each domain. We evaluate the blind guess for surface
normals on OASIS data, and the test split of the starter set
in Tab. 4. The reported results will provide an estimation
of the lower bound performance for these datasets. We also
compare our blind guesses to the ones computed only from
the Taskonomy dataset. A visualization of these guesses
for surface normals and reshading are provided in Fig. 4.

Comparing the blind guesses for the 2 datasets demonstrates
that there is less bias present in the starter set compared to
the Taskonomy alone, such as the ceiling bias present in
the top part of the image for surface normal blind guess of
Taskonomy which is not the case in our starter set. Better
performance of the starter set blind guess (compared to the
Taskonomy alone) on OASIS data, as shown in Tab. 4, will
further prove the point.

8. Surface Normal Estimation on OASIS
Dataset

In this section, we include additional qualitative results
from our surface normal estimation experiments on OA-
SIS [8]. Fig. 5 qualitatively compares the models trained
on Full Taskonomy and the starter set on some sample im-
ages from the val split of OASIS. As shown by the figure,
the model trained on Full Taskonomy has poor performance
on objects and largely misses the details as opposed to the
model trained on the starter set.

9. Multi-Task Learning Rank Reversal Exper-
imental Setup

In this section, we explain the experimental setup for the
multi-task learning rank reversal experiment provided in the
section 5.3 of the main paper. Similar to [32], we use a
simple shared-encoder MTL model, a single task baseline,
as well as 2 other common MTL approaches (MTAN [20]
and Cross-stitch [26]) for our experiment. Each encoder
is a ResNet-50 model with dilated convolutions and pre-
trained on ImageNet [12]. We use Deeplab [7] head for
the task specific decoders. Each multi-task model is trained
on the 4 following tasks: semantic segmentation, 3D key-
points, depth z-buffer, and occlusion edges. We use medium
Taskonomy, Replica, and Hypersim as the training data, and
evaluate the models performance on semantic segmentation
and 3D keypoints on tiny Taskonomy test set. Table 4 of the
main paper provides the results for this experiment.
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Figure 4: Statistically informed guesses (“Blind Guess”) on the
Starter Set. Blind guesses computed from the starter set and Taskonomy
alone are shown for 2 domains. Comparing the surface normal blind guess
for the 2 datasets will show that there is less bias present in our starter set
comparing to Taskonomy alone (the ceiling bias which is only present in
Taskonomy blind guess).

Angular Error◦ (↓) % Within t◦ (↑) Relative Normal (↑)
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Table 4: Blind guess evaluation on OASIS and starter set. The blind
guesses computed from our starter set and Taskonomy alone are evaluated
on val split of OASIS and test split of the starter set. The results will
provide a lower bound for performance on these benchmarks.
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